Транспирация растений

Содержание:

Описание процесса

На процесс испарения влияют несколько важных факторов. Именно от этих параметров зависит результат процесса и количество получаемой растениями жидкости.

Влияющие на процесс факторы

Интенсивность процесса определяется количеством воды, которое приходится на клетки листьев, а на это состояние влияют природные условия – влажность на улице, температура воздуха, степень освещенности. Чем суше воздух, тем быстрее влага будет покидать листья. А влажность почвы влияет противоположным образом.

Главным фактором нужно считать освещение. Когда листок поглощает свет, его температура растет, а устьица раскрываются. Влияние солнечного света позволяет разграничить организмы на три группы в зависимости от суточного хода процесса.

Первая группа отличается закрытыми устьицами в темное время суток. С рассветом они распахиваются. В течение дня они могут передвигаться, если воды недостаточно. К таким растениями относят злаковые культуры. Вторая группа закрывает устьица днем, а ночью держит открытыми. Это культуры с тонкими листьями: горох, свекла и т. д. Третья группа всегда держит устьица ночью открытыми, а днем их поведение зависит от достатка влага. К ней относят капусту и другую растительность с толстыми листьями.

Стоит отметить, что ночью транспирация замедляется ввиду низкой температуры, отсутствия света и высокой влажности. На протяжении суток наилучшие показатели этого процесса можно наблюдать в обед. Чем ниже опускается солнце, тем медленнее растения избавляются от жидкости. В этом случае имеет место относительная транспирация – отношение испарения с площади листа к количеству времени испарения для такой же площади водной глади.

Влияющие на процесс водного обмена факторы

Регулирование водного баланса

Вы должны знать, что наибольшее количество воды поступает в растительный организм благодаря корням, которые извлекают ее из недр земли. Корневища некоторых культур настолько сильные, что извлекают воду из грунта до нескольких десятков атмосфер. Это в первую очередь касается растений, которые растут в условиях засухи.

Корневище имеет высокую чувствительность, поэтому легко воспринимает содержание влаги в грунте. Это позволяет корням менять вектор роста в соответствии с влажностью среды обитания. Помимо этого, корни у некоторых растений могут извлекать воду с помощью наземных органов. Например, лишайники поглощают жидкость всем своим телом.

После того как вода проникает в растение, она продвигается по его клеткам. По пути она задействует все процессы, необходимые для жизнедеятельности. Определенный объем жидкости растение расходует на фотосинтез, но большинство влаги уходит для наполнения тканей, а также компенсацию потерь от испарения, без которых организм не может нормально существовать.

Испарение жидкости происходит при контакте с воздухом, поэтому это действие затрагивает все части растительности

Для того чтобы правильно отрегулировать водный баланс, важно уравнять поглощаемое количество жидкости и ее расход. Только в этом случае организм будет развиваться гармонично

Нарушения баланса могут быть длительными или зависеть от ситуации. Если с ситуативными колебаниями справиться легко, то длительные процессы протекают с некоторыми трудностями. Например, в процессах водоснабжения могут возникнуть сбои, что чревато гибелью растительности.

Таблица: количество воды для получения 1 т продукции

Как вы поняли, транспирация – это важный процесс, защищающий зелень от негативного влияния солнечного света. Благодаря этому явлению температура листа снижается на десять градусов

Это важно, так как перегрев негативно сказывается на фотосинтезе и разрушает хлоропласты. Именно благодаря такой способности растений к избавлению от влаги они способны не погибать при высокой температуре

Испарение: что это за процесс

Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.

Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.

Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.

  • Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
  • Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.

Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.

Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .

Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.

Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:

  • из глубины жидкости к поверхности, а затем в воздух;
  • только из жидкости к поверхности;
  • к поверхности из воды и газовой среды одновременно;
  • к площади поверхности только от воздуха.

Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:

Испарение Кипение
При любой температуре, с поверхности жидкости При определенной температуре, во всем объеме жидкости

Листорасположение

Листорасположение, или филлотаксис – это порядок размещения листьев на оси побега. Различают несколько основных вариантов листорасположения:

  • спиральное, или рассеянное (очерёдное) – на каждом узле расположен один лист и основания листьев одной оси последовательно можно соединить условной спиральной линией: растянутой, если стебель удлинённый, и плоскостной, если он укороченный;
  • двурядный вид листорасположения, который можно рассматривать как частный случай спирального. Отражает маятниковую симметрию деятельности апекса. На каждом узле находится один лист, охватывающий основанием всю или почти всю окружность. Средняя линия всех листьев лежит в одной вертикальной плоскости;
  • мутовчатое – появляется, если на одном уровне закладывается несколько листовых примордиев, образующих общий узел. Нередко при близком изучении оказывается, что каждый лист мутовки имеет собственный узел, но они сильно сближены;
  • супротивное листорасположение – частный случай мутовчатого, когда на одном узле образуется два листа точно напротив друг друга. Часто такое расположение бывает накрест супротивным, т. е. плоскости соседних пар листьев являются взаимно перпендикулярными.

Листорасположение

Хотя тип расположения листьев – это наследственный признак, однако он зависит от среды обитания и в процессе роста растения может меняться. Благодаря неравномерности роста стебель может скручиваться вокруг своей оси. Для сохранения симметрии размещения листьев по стеблю их черешки могут изгибаться, поворачивая листья так, что по их расположению уже не удаётся определить исходную формулу филлотаксиса.

Особенно ярко это выражается на листовой мозаике. При этом листья выстраиваются горизонтально, подставляя пластинки свету, так что становятся одной плоскостью.  Листовая мозаика способствует максимальному использованию рассеянного света. Её можно наблюдать на горизонтальных ветвях в кроне липы, на побегах плюща, герани, подорожника, табака и т.д.

Листовая мозаика

Ход испарения в зависимости от времени суток

В зависимости от времени суток, испарение проходит по-разному. Утром испарение происходит крайне вяло. Но как только солнце поднимается по небосводу все выше — влажность в воздухе уменьшается, и процесс испарения усиливается. Ближе к вечеру этот процесс замедляется, а ночью замедляется настолько сильно, насколько это возможно.

Наблюдать правильный процесс «дыхания» растений можно наблюдать только в хорошую погоду и безоблачном небе. Обычно, в сутки транспирация имеет два пика испарения, в самый жаркий час испаряется самый минимум. Устьица закрываются а растения высушиваются.

Интенсивность транспирации

Интенсивность транспирации – это количество влаги, испаряемой с дм2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.

Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.

При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.

Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:

Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.

Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.

Транспирация – что это такое

Если говорить об этом понятии подробнее, то транспирация – не что иное, как испарение в атмосферу влаги из листьев и стеблей живых растений. Это явление помогает воде, которую всасывает корневая система, иногда из достаточно глубоких слоев грунта (в пустынях корни могут уходить вглубь даже на двадцать метров), подниматься по стеблям или стволам к листьям, цветам, плодам, доставляя ко всем частям растительного организма нужные минералы и элементы. И новая порция воды с питательными веществами «подсасывается» благодаря транспирации у растений: место освобождается испарением использованной влаги через мелкие поры на листьях, расположенные с тыльной стороны. Интенсивность движения воды зависит от внешних факторов – времени суток, температуры и влажности воздуха. Другими словами, растение транспирирует, когда влажность воздуха внутри него выше влажности окружающей атмосферы. Доказано, что десять процентов всей влаги, которая испаряется на поверхности Земли, относится на счет именно растительного мира нашей планеты.

Что такое транспирация и ее показатели

Транспирацией растений называется процесс извлечения жидкости с дальнейшим испарением. Примечательно, что растительная культура использует только 10% получаемой жидкости, а остальные 90% она просто испаряет. Этот процесс в биологии позволяет защитить растительность от жары и ускоряет проникновение минералов в стебли.

Транспирация – процесс испарения влаги через листья

Интенсивность и продуктивность

Интенсивность испарения определяется так: количество воды, высыхающее на единице площади листьев, деленное на отрезок времени. В течение суток этот показатель у каждого растения будет отличаться: ночью он достигает 20 г в час, а днем – 250 г.

Формула продуктивности выглядит так: соотношение сухой массы к килограмму жидкости в период потери влаги. Средний показатель – 3 г, а максимальный – 8 г.

Транспирационный коэффициент

Этот показатель демонстрирует количество влаги, необходимое растительности для создания 1 г сухой массы, которая включает листья, корни и стебель. Наиболее верный расчет осуществляется для однолетних организмов – составная масса достигает порядка 350 г. Этот коэффициент позволяет вычислить емкость жидкости, необходимой для полива культуры.

Таблица: транспирационные коэффициенты различных сельскохозяйственных культур

Суточный ход

Наименьшая погрешность этого показателя достигается только при безоблачной погоде. Минимум транспирации приходится на жаркий полдень, поскольку в это время устьицы закрываются и теряют влагу.

Относительная транспирация

Этот показатель позволяет сравнить скорость испарения с поверхности листьев и открытой поверхности воды. Коэффициент меняет свою интенсивность в промежутке от 0,01 до 1,0.

Механизм транспирации

Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.

Транспирация – это процесс перемещения жидкости по растительному организму и ее испарения наземной частью растения. В транспирации участвуют листья, стебли, цветы, плоды, корневая система растительного организма.

Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.

Механизм действия следующий:

  1. Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
  2. Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.

Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.

У растений различают две разновидности влагообмена:

  • посредством устьиц;
  • через кутикулы.

Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.

Лист растения состоит из:

  1. Клеток эпидермиса, которые образуют основной защитный слой.
  2. Кутикула – восковой (внешний) защитный слой.
  3. Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
  4. Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
  5. Устья – отверстия в эпидермисе, контролирующие газообмен растения.

При устьичной транспирации, процесс испарения происходит в две стадии:

  1. Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
  2. Выделение газообразной влаги в атмосферу через устья эпидермиса.

При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.

Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.

Важно знать, что уровень устичной транспирации составляет от 80 до 90 % от объема испарения всего листа. Именно поэтому такой механизм является основным регулятором интенсивности испарения у растений

Транспирация

Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.

Транспирация выполняет в растении следующие основные функции:

это верхний двигатель тока воды,

это защита от перегрева,

это нормализация функционирования коллоидных систем клеток листа.

Показатели транспирации

Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.

Интенсивность транспирации — это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:

Тр= С г Н2О _

r м2.1час,

где Тр — интенсивность транспирации, С — градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, r — сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).

Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.

Устьичное диффузионное сопротивление зависит от степени открытия устьиц.

Кутикулярное диффузионное сопротивлениезависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.

Продуктивность транспирации — это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.

Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.

Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.

Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.

Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.

Ссылки [ править ]

  1. Benjamin Cummins (2007), биологических наук (3 -е изд.), Freeman, Скотт, стр. 215
  2. ↑ Taiz, Lincoln (2015). Физиология и развитие растений . Сандерленд, Массачусетс: Sinauer Associates, Inc. стр. 101. ISBN 978-1-60535-255-8.
  3. Фриман, Скотт (2014). Биологические науки . Соединенные Штаты Америки: Пирсон. С. 765–766. ISBN 978-0-321-74367-1.
  4. Simon, EJ, Dickey, JL, & Reece, JB (2019). Эссенциальная биология Кэмпбелла. 7-й Нью-Йорк: Пирсон
  5. ↑ Graham, Linda E. (2006). Биология растений . Река Аппер Сэдл, Нью-Джерси 07458: Pearson Education, Inc., стр. 200–202. ISBN 978-0-13-146906-8.
  6. Мелландер, Пер-Эрик; Епископ, Кевин; Лундмарк, Томас (28 июня 2004 г.). «Влияние температуры почвы на транспирацию: изменение масштаба участка в молодом насаждении сосны обыкновенной». Экология и управление лесами . 195 (1): 15–28. DOI . ISSN .
  7. Мартин, J .; Леонард, В .; Стэмп, Д. (1976), Принципы выращивания полевых культур (3-е изд.), Нью-Йорк: Macmillan Publishing Co., ISBN 978-0-02-376720-3
  8. Ясечко, Скотт; Sharp, Zachary D .; Гибсон, Джон Дж .; Биркс, С. Жан; Йи, Йи; Фосетт, Питер Дж. (3 апреля 2013 г.). «В наземных водных потоках преобладает транспирация». Природа . 496 (7445): 347–50. Bibcode . DOI . PMID . S2CID .
  9. Evaristo, Jaivime; Ясечко, Скотт; Макдоннелл, Джеффри Дж. (2015-09-03). «Глобальное отделение транспирации растений от грунтовых вод и речного стока». Природа . 525 (7567): 91–94. Bibcode . DOI . ISSN . PMID . S2CID .
  10. Боуэн, Габриэль (2015-09-03). «Гидрология: многоотраслевая экономика почвенных вод». Природа . 525 (7567): 43–44. Bibcode . DOI . ISSN . PMID . S2CID .
  11. Чжан, Юн-Цзян (декабрь 2016 г.). . Физиология растений . 172 (4): 2261–2274. DOI . PMC . PMID .
  12. ↑ Hochberg, Uri (июнь 2017). . Физиология растений . 174 (2): 764–775. DOI . PMC . PMID .
  13. ^ Холбрук, Мишель (май 2001 г.). . Физиология растений . 126 (1): 27–31. DOI . PMC . PMID .
  14. Tiaz, Lincoln (2015). Физиология и развитие растений . Массачусетс: Sinauer Associates, Inc., стр. 63. ISBN 978-1605352558.

викторина

1. Какой тип транспирации НЕ является?A. Лентикулярная транспирацияB. Мезархальная транспирацияC. Кутикулярная транспирацияD. Стоматальная транспирация

Ответ на вопрос № 1

В верно. Лентикулярная, кутикулярная и устная транспирация – это формы транспирации, при которых вода теряется через линзу, кутикулу и устьицу соответственно. Мезархальная транспирация не существует. Месарх описывает путь развития ксилемы.

2. Когда температура повышается, что происходит со скоростью транспирации?A. Транспирация увеличивается.B. Транспирация уменьшается.C. Транспирация остается с той же скоростью.

Ответ на вопрос № 2

верно. Когда температура увеличивается, транспирация также увеличивается. Растения больше открывают свои устьицы в горячих средах, так что вода может испаряться, что охлаждает растение. Поэтому растения в горячих средах обычно переносят больше, чем растения в более холодных средах.

3. Когда _____________ увеличивается, скорость транспирации уменьшается.A. ветерB. Влага в почвеC. Влага в воздухеD. температура

Ответ на вопрос № 3

С верно. Когда относительная влажность высокая, транспирация уменьшается. Меньше воды испаряется в окружающий воздух, если в воздухе больше влаги. Когда влажность низкая, а воздух сухой, транспирация увеличивается. Вода проникает в воздух через диффузию; он перемещается из области с более высокой концентрацией (лист) в область с более низкой концентрацией (воздух).

Суточный ход транспирации

В течение суток уровень испарения влаги у растений меняется:

  1. Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
  2. На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
  3. Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
  4. При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
  5. При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.

Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.

У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.

Определение транспирации в биологии — видео

https://youtube.com/watch?v=f0MoAb0XMEs

http://www.lineyka.net/raboty-na-dache/transpiracija-u-rastenij-sutochnyj-hod.htmlhttp://studopedia.ru/5_97143_transpiratsiya-ee-znachenie-list-kak-organ-transpiratsii-vidi-transpiratsii-ee-pokazateli-sutochniy-hod-transpiratsii-vliyanie-vneshnih-uslovii.htmlhttp://glav-dacha.ru/transpiraciya-u-rasteniy/

Испарение в жизни

И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.

Испарение в организме человека и животных

Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.

Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.

Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно

Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.

Испарение у растений

Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.

Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.

Испарение в природе и окружающей среде

Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.

Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.

Испарение в промышленности и быту

С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.

В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.

Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.

Понимать и любить этот мир проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели детской школы Skysmart.

Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков, Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!

Насыщенный пар

Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.

Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.

На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.

Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Проект: «Транспирационный эксперимент»

 Растения потеют? Не совсем, но они теряют воду. Подсчитайте недостающую массу с помощью этого эксперимента, узнав, как растения испаряют воду через транспирацию.

Что нам понадобится:

  • три небольших тонколистных растения;
  • три небольших широколистных растения;
  • маленькая лейка;
  • линейка;
  • 6 пластиковых пакетов, достаточно больших, чтобы полностью покрыть горшок с растением;
  • малярный скотч.

Ход эксперимента:

  1. Возьмите шесть маленьких растений, три с широкими листьями и три с узкими листьями. Используйте малярный скотч и ручку, чтобы написать на каждом растении его номер.
  2. Поливайте растения, пока вода не будет выливаться из нижней части горшка. Если растения очень сухие или сухая почва, то их тщательно полейте и подождите несколько минут. Затем полейте их снова. Когда вода впитается и горшок наполнится водой, а почва будет мягкая как губка — самое время взвесить растения. Нарисуйте таблицу, которая показывает, сколько весит каждое растение до и после эксперимента.
Название растения Вес До Вес После
№ 1 (Тонкий лист)
  1. Создайте гипотезу, обратившись к этим вопросам:
  • Если вы поливаете растения, а затем ставите их на солнце, что будет с водой?
  • Изменится ли что-нибудь, если вы обернете пластиковым пакетом вокруг основания растения?
  • Как добавление пакета изменит ваш эксперимент?
  1. Поставьте растения на теплое солнце на час, надев на них пакеты, затем снимите их и снова взвесьте каждое растение. Запишите вес в таблицу. Вес отличается?  Остался тем же? Почему вы думаете, что это так? Разные растения потеряли разное количество веса или потеряли примерно одинаковое количество? Почему?
  2. Высушите изнутри каждый пластиковый пакет. Повторно запечатайте их на растениях, верните растения в солнечное место и продолжайте измерять и взвешивать в течение нескольких часов, не добавляя больше воды. Что происходит?

Вывод:

Во время эксперимента по транспирации растения будут терять воду, даже если они находятся в пакетах. Растения с широкими листьями потеряют немного больше воды, чем растения с тонкими листьями, но в зависимости от размера растения это может быть очень сложно измерить.

Почему?

Так как же вода выходит из растений?

В жаркий день, вы можете немного вспотеть. Растения также «потеют». Подобно тому, как мы теряем воду через нашу кожу, растения теряют воду через свои листья.

Хотя вы, возможно, не сможете их увидеть , на листьях растений есть маленькие поры или отверстия. Взгляните на обратную сторону листа под микроскопом, и вы сможете увидеть эти отверстия, которые называются устьицами. Вот, где растения могут терять воду в результате транспирации.

Несмотря на то, что это невидимый процесс, потеря воды из растений в результате транспирации является важной частью круговорота воды, потому что она добавляет много воды в наш воздух. Всего за один год каждый лист на земле может отдать воды весом намного больше своего собственного. Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!

Вы, вероятно, поливаете растения в своем доме, чтобы они оставались здоровыми — и, если растениям нужна вода, то почему они ее теряют? Транспирация происходит отчасти потому, что растения должны дышать. Растения должны поглощать углекислый газ, и для этого им нужно открыть свои устьица. Когда это происходит — выходит вода. Вы, вероятно, испытывали это и во время своего собственного дыхания: в холодный день вы даже можете видеть воду от своего дыхания, которая создает облачка в воздухе.

Транспирация также помогает растениям, охлаждая их, подобно тому, как пот помогает нам регулировать температуру нашего тела. Транспирация также играет большую роль, помогая воде перемещаться вокруг растения, изменяя давление воды в клетках растения. Это помогает минералам и питательным веществам подниматься вверх от корней растения.

Дальнейшее исследование:

Что будет с растением, если вы обмажете вазелином его листья? Как насчет оливкового масла? Попробуйте смазывать различными веществами листья и взвешивать растение, затем повторите эксперимент. Что будет происходить в теплой комнате? Транспирация будет выражена больше или меньше?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector